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Abstract: Objective: This review consists of three parts, representing three different possibilities of interactions 
between cannabinoid receptor ligands of both exogenous and endogenous origin and cytochrome P450 enzymes 
(CYPs). The first part deals with cannabinoids as CYP substrates, the second summarizes current knowledge on the 
influence of various cannabinoids on the metabolic activity of CYP, and the third outline a possible involvement of 
the endocannabinoid system and cannabinoid ligands in the regulation of CYP liver activity.  

Methods: We performed a structured search of bibliographic and drug databases for peer-reviewed literature using 
focused review questions.  

Results: Biotransformation via a hydrolytic pathway is the major route of endocannabinoid metabolism and the deactivation of substrates
is characteristic, in contrast to the minor oxidative pathway via CYP involved in the bioactivation reactions. Phytocannabinoids are ex-
tensively metabolized by CYPs. The enzymes CYP2C9, CYP2C19, and CYP3A4 catalyze most of their hydroxylations. Similarly, CYP 
represents a major metabolic pathway for both synthetic cannabinoids used therapeutically and drugs that are abused. In vitro experi-
ments document the mostly CYP inhibitory activity of the major phytocannabinoids, with cannabidiol as the most potent inhibitor of 
many CYPs. The drug-drug interactions between cannabinoids and various drugs at the CYP level are reported, but their clinical rele-
vance remains unclear. The direct activation/inhibition of nuclear receptors in the liver cells by cannabinoids may result in a change of 
CYP expression and activity. Finally, we hypothesize the interplay of central cannabinoid receptors with numerous nervous systems, re-
sulting in a hormone-mediated signal towards nuclear receptors in hepatocytes.  
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1. INTRODUCTION 
 Cytochrome P450 (CYP) enzymes are haem-containing 
monooxygenases (EC 1.14.14.1) bound to the membranes of the 
endoplasmic reticulum or mitochondria in the liver, intestine, kid-
ney, lung, brain, skin, and heart, with the highest level of expres-
sion in the liver and intestine [1, 2]. CYPs are functionally coupled 
with cytochrome P450 reductase, which enables the transfer of 
electrons from NADPH, the reduced form of NADP (nicotinamide 
adenine dinucleotide phosphate), to CYP. Microsomal enzymes 
from subfamilies CYP3A, CYP2C, CYP2D, CYP1A, and CYP2B 
play a pivotal role in the metabolism of xenobiotics [2]. Variability 
in the drug plasma levels may diverge depending on different fac-
tors, and according to some authors may reach up to 40-fold differ-
ences [3]. The most important factors influencing drug plasma lev-
els include the activities of the CYPs with their genetic polymor-
phisms, epigenetic changes such as DNA methylation and histone 
deacetylation, together with exogenous factors. These factors sub-
stantially influencing CYP metabolic activity are the major source 
of variability in the pharmacokinetics of drugs and thus in drug 
responses [3]. CYPs are therefore of particular relevance in clinical 
pharmacokinetics. On the other hand, the importance of CYP in the 
metabolism of endogenous substances is also crucial. CYPs are 
involved in the metabolism of steroid hormones, cholesterol, vita-
min D, bile acids and eicosanoids [1], and also most endocannabi-
noids [4]. 
 Cannabinoids are a group of substances originally isolated from 
the cannabis plant (Cannabis sativa). Today over 100 different 
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molecules with similar structure, most of them with a C21 terpeno-
phenolic moiety, have been isolated and described [5, 6]. They are 
known to have a wide range of pharmacologic effects [7, 8], for 
which the hemp plant has been used for over 6000 years in herbal 
medicine and as a recreational drug. 
 The first cannabinoid isolated from the cannabis oil was can-
nabinol (CBN) in 1898 [9, 10], followed by cannabidiol (CBD) in 
1940 [11]. Nevertheless, the major psychoactive compound of can-
nabis remained unknown until 1964, when �9-tetrahydrocannabinol 
(�9-THC) was isolated in its pure form [12, 13] and its structure 
was described [14]. The second breakthrough in cannabinoid re-
search was the finding that �9-THC elicits its activity by binding to 
specific receptors. The first two G-protein coupled receptors 
(GPCRs) to be discovered, which when activated inhibit adenylyl 
cyclase, were called the CB1 and CB2 receptors. The CB1 receptor 
was identified in the brain in 1988 [15], and the CB2 receptor in 
immune cells in 1993 [16]. These were the first pieces of direct 
evidence for the possible existence of the endocannabinoid system 
[17]. The cloning of both of these receptors [16, 18] opened the 
door to the identification of their endogenous ligands (endocan-
nabinoids), and to the description of their distribution and transduc-
tion signal pathways. Anandamide (N-arachidonoylethanolamine) 
[19] and 2-arachidonoylglycerol (2-AG) [20, 21] are among the 
first detected and most studied endocannabinoids so far. More re-
cent studies indicate that endocannabinoids, besides the cannabi-
noid receptor, can also activate multiple receptor targets, including 
nuclear peroxisome proliferator-activated receptors (PPARs) [22, 
23], the transient receptor potential vanilloid type 1 receptor 
(TRPV1) [24, 25], and orphan G protein-coupled receptors, such as 
GPR55, GPR119, and GPR18 [26-29]. Other works indicate that 
cannabinoids have the ability to modulate the activity of additional 
receptors and their signal transduction pathways, for example 
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opioid, serotonin, NMDA, and nicotinic acetylcholine receptors 
[29, 30]. 
 Nowadays, the terminology concerning cannabinoids is not 
unified. Some authors describe cannabinoids as ligands of cannabi-
noid CB1 or CB2 receptors of herbal (phytocannabinoids), endoge-
nous (endocannabinoids) or xenogenic origin (synthetic cannabi-
noids). Some others differentiate between a) true cannabinoids with 
the structure derived from endogenous arachidonic acid or natural 
herbal cannabis-derived compounds, b) synthetic cannabinoid-like 
compounds of different structures with either direct or indirect can-
nabimimetic effects, or compounds inhibiting the cannabinoid re-
ceptor activities. Moreover, some authors consider endogenous 
molecules with a similar structure, but without the ability to bind to 
CB receptors to also be cannabinoids. These endocannabinoid-like 
compounds can interfere with the activity of true endocannabinoids, 
as they are in several cases synthetized and biotransformed via the 
same pathways [31]. For the above reasons and to maintain the 
clarity the authors of this review decided to use the name cannabi-
noids for all of the substances described. An overview of endocan-
nabinoids and endocannabinoid-like substances as well as the most 
common phytocannabinoids, synthetic ligands of cannabinoid re-
ceptors used in preclinical studies, and cannabinoid derived drugs is 
shown in Table 1.
 The aim of this work is to provide a comprehensive review of 
the interactions between CYPs and the endocannabinoid system and 
its ligands. Here, we describe the role of CYP in the metabolism of 
cannabinoids and vice versa the role of cannabinoids in the regula-
tion of CYP activity. 

2. CANNABINOIDS AS SUBSTRATES OF CYTOCHROME 
P450 MONOOXYGENASES 
 The endogenous and exogenous cannabinoids are substrates of 
various CYPs. Due to the possibility of interaction between endo-
cannabinoids, phytocannabinoids, or synthetic cannabinoids and 
other drugs at the CYP site, there is a risk of treatment failure or 
drug toxicity. It is therefore important to identify possible sites of 
such interactions for the successful prevention of pharmacokinetic 
drug-drug interactions.  

2.1. Endocannabinoids and Endocannabinoid-Like Compounds 
 Numerous amides of fatty acids, notably amides of arachidonic 
acid, its derivatives, and their metabolites, are potent ligands of 
cannabinoid receptors. To date, anandamide (AEA), 2-AG and its 
isomer 1-arachidonoylglycerol, oleamide (oleic acid amide),  
virodhamine (O-arachidonoylethanolamine), di-homo-�-linolenoyl-
ethanolamide, N-arachidonoyldopamine, noladin ether (2-
arachidonylglyceryl ether), and N-arachidonoylserine were identi-
fied and proved to be endogenous ligands of at least some cannabi-
noid receptors. Other endogenous N-acylethanolamines, N-
acylethanolamides, and N-acyl-aminoacids such as palmitoyletha-
nolamide, N-arachidonoyltaurine, N-arachidonoylglycine [32-35], 
N-docosatetraenoyl-ethanolamine, N-docosahexaenoylethanolamine, 
or N-eico-sapentaenoylethanolamine were found in mammalian 
tissues over the last decade and exhibit varying affinity to cannabi-
noid receptors CB1 and CB2. It is also possible that they potentiate 
the effects of „classical“ endocannabinoids such as anandamide and 
2-AG independently of binding to CB receptors. Therefore, they are 
sometimes called „endocannabinoid-like compounds“ [4, 35-37]. 
 The metabolism of AEA and 2-AG, being the first investigated 
and most studied endocannabinoids, was recently reviewed by 
Snider et al. [38] and Zelasko et al. [4].  
 The biological effects of most endocannabinoids are terminated 
by transport to the cells and enzymatic inactivation. It was hypothe-
sized that the transport of endocannabinoids to the cells may also 
regulate their biological effects. Mechanisms such as simple diffu-
sion, facilitated diffusion or endocytosis are thought to uptake AEA 
to the cells [38]. A major degradation pathway is catalyzed by fatty 
acid amide hydrolase (FAAH) and monoacylglycerol lipase 
(MAGL) [4, 38]. The oxidative degradation of endocannabinoids is 
only a minor pathway and involves the enzymes cyclooxygenase-2 
(COX-2), 12- and 15-lipoxygenase (12-LOX, 15-LOX, respec-
tively), and CYPs [38-41]. Since some of the metabolites of endo-
cannabinoids originating via CYP enzymes are active ligands of CB 
receptors, the role of this oxidative pathway remains unclear [4, 35, 
37, 38]. Due to the focus of this review, CYP-mediated pathways 
are described in detail. 

Table 1. Overview of cannabinoids.

Endocannabinoids Endocannabinoid-like compounds Phytocannabinoids Synthetic cannabinoids 

anandamide palmitoylethanolamide 	9-tetrahydrocannabinol dronabinola

2-arachidonoylglycerol N-docosatetraenoylethanolamine 	8-tetrahydrocannabinol nabilonea

noladin ether di-homo-�-linolenoyl-ethanolamide cannabidiol rimonabant 

virodhamine 2-oleoylglycerol cannabinol methanandamide 

arachidonoyldopamine N-oleoylethanolamine cannabigerol JWH-0133 

N-arachidonoylserine N-eicosapentaenoylethanolamine cannabichromen AM-251 

ACEA 
homo-�-linolenoylethanolamide N-docosahexaenoylethanolamine cannabivarin 

ACPA 

7,10,13,16-
docosatetraenoylethanolamide 

oleamide cannabielsoin WIN 55,212-2 

 N-arachidonoylglycine cannabitriol CP 55,940 

 1- arachidonoylglycerol  HU-210 

 N-arachidonoyltaurine   
a synthetic analogues of 	9-THC 
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2.1.1. Arachidonic Acid  
 Since the CYP-mediated metabolic pathways of endocannabi-
noids are closely similar to the metabolism of arachidonic acid 
(AA), this CYP-mediated metabolism of AA is reviewed briefly so 
as to elucidate theoretical possibilities of the oxidations at the “fatty 
acid” site of endocannabinoid molecules. 
 CYPs are known to metabolize arachidonic acid by epoxida-
tion, 
/
-1 hydroxylation, bis allylic oxidations, and hydroxylation 
to conjugated dienols (Fig. 1) [42-44]. As a result, a wide variety of 
metabolites with biological activities are produced.  
 Arachidonic acid has four double bonds and epoxidation may 
occur on any of them. The products of epoxidation, epoxyeicosa-
trienoic acids (EET), may be further hydrolyzed to dihydroxyeicosa-
trienoic acids (diHETE). EET are produced by several hepatic and 
extrahepatic CYPs - CYP2C8, CYP2C9, CYP1A2, and CYP2B6, with 
the latter playing only a minor role (Table 2). The 
/
-1 hydroxyla-
tions of arachidonic acid to hydroxyeicosatrienoic acid (HETE) are 
catalyzed by the CYP4A, CYP2E1, and CYP4F families (Table 3).
Finally, bis-allylic oxidations and hydroxylations with double bond 
migration are catalyzed by CYP families 1A, 3A, 2C, and 4F (Table 4).
2.1.2. Anandamide 
 Anandamide, the first known endocannabinoid, was isolated from 
the porcine brain by L. O. Hanu� and W. A. Devane from the team of 
prof. R. Mechoulam at Hebrew University, Jerusalem in 1992 [19]. 
AEA is hydrolyzed by the membrane-bound enzyme FAAH, with the 
highest level of expression in the liver. This degradative pathway is 
the most important in the regulation of AEA cellular and tissue con-
centrations. FAAH hydrolyses AEA towards arachidonic acid and 
ethanolamine. Thus the inhibition of FAAH may become a useful 
alternative in cannabinergic treatment options [38]. COX-2, an en-
zyme expressed in an inducible manner in inflammation, converts 
anandamide to several prostaglandin ethanolamides [46, 47]. Oxida-
tion of the aliphatic chain by 12-LOX and 15-LOX yields 12- and 15-
hydroxyanandamide. 12-hydroxyanandamide in particular may play a 
significant role in the modulation of neuronal functions via its influ-
ence on neurotransmitter levels [48]. 

Fig. (1). CYP-mediated metabolism of AA [42-44]. 

 CYPs involved in the degradation of AEA belong to the 
CYP3A and CYP4F families. The biodegradation of anandamide by 
CYPs was reported for the first time by Bornheim et al. in 1995 
[49], who described its conversion by mouse liver microsomal frac-
tion to approximately 20 products, whose structures were not iden-
tified. Furthermore, pretreatment with common CYP inducers such 

Table 2. Epoxidation of AA catalyzed by cytochrome P450 enzymes [42-44]. 

CYP Product Tissue 

2B6 14,15-EET, 11,12-EET liver 

2C8 14,15-EET, 11,12- EET, 8,9-EET liver, lung, vascular endothelium 

2C9 14,15- EET, 11,12- EET, 8,9-EET liver, lung, vascular endothelium 

2C19 14,15- EET, 8,9-EET liver 

2J2 5,6- EET, 8,9- EET, 11,12- EET, 14,15-EET kidney, GIT, pancreas 

1A2 8,9- EET, 11,12-EET liver, lung 

Table 3. �/�-1 hydroxylations of AA catalyzed by cytochrome P450 enzymes [44, 45].

CYP Product Tissue 

4A11 19-, 20-HETE liver, kidney 

4F2 20-HETE liver, kidney 

4F3 hydroxy-LTB4 polymorphonuclears 

4F11 ? liver, kidney 

4F12 18-HETE liver, kidney 

2E1 19(S)-HETE, 19(R)-HETE, 18(R)- HETE  

COOH

arachidonic acid

epoxidation

bis allylic
oxidation

hydroxylation with double
bond migration

-1 hydroxylation

16-HETE
17-HETE
18-HETE
19-HETE
20-HETE

  5-HETE
  8-HETE
  9-HETE
11-HETE
12-HETE
15-HETE

  7-HETE
10-HETE
13-HETE

5,6-EET
    8,9-EET
11,12-EET
14,15-EET
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as dexamethasone increased the formation of metabolites 5-15 fold, 
and pre-treatment with a CYP3A antibody diminished the produc-
tion of anandamide metabolites. Bornheim et al. also suggested that 
the CYP3A, CYP2B, and CYP1A subfamilies are involved in the 
metabolism of AEA in mouse liver microsomes. Similarly, Costa  
et al. suggested that CYP3A and CYP2B subfamilies are involved 
in the metabolism of anandamide in rat liver microsomes [50].  
 To the best of our knowledge, Snider et al. was the first to in-
vestigate the biotransformation sites of AEA by human liver and 
kidney microsomal CYPs, and identified the metabolites [51]. The 
biotransformation routes are fundamentally similar to those of AA. 
Anandamide may be epoxygenated by several CYPs at positions 5-
6, 8-9, 11-12, and 14-15 to form four epoxyeicosatrienoic acid 
ethanolamides (EET-EAs). At least in some of them, this oxidative 
pathway is more bioactivation than degradation, since 5,6-EET-EA 
seems to be a more stable CB ligand than AEA itself [38]. Never-
theless, all EET-EAs may be further hydroxylated in the � positions 
(again, similarly to AA metabolism) predominantly by CYP2D6 
and thus 20-hydroxy-epoxyeicosatrienyl ethanolamides (HEET-
EAs) are produced [51]. With 5,6-EET-EA and 14,15-EET-EA, 
hydroxylations at positions 16, 17, 18, and 19 were also described. 
EET-EA may be hydrolyzed by epoxyhydrolase to form dihydroxy-
lated EET-EA [52]. 
 Besides these reactions, �- and �-1-hydroxylations of AEA 
were also described [4, 38, 51, 53]. Details on the oxidative me-
tabolism of AEA are shown in Figure 2.
2.1.3. 2-arachidonoylglycerol 
 The main metabolic degradation of 2-AG is catalyzed by 
MAGL, FAAH, and �,�-hydrolase domains (ABHD) 6 and 12 [4, 
38, 54]. The structure of 2-AG suggests that they are subject to the 
same oxidative metabolism as AA and AEA, which would lead to 
four regioisomeric 2-epoxyeicosatrienylglycerol derivatives (EET-
G) (Fig. 3). In contrast to this assumption, only 2 EET-G were iden-
tified to date – 2-(11,12-epoxyeicosatrienyl)-glycerol and 2-(14, 15-
epoxyeicosatrienyl) glycerol, which are produced by CYP2J2 in rat 
kidney and spleen [55] and in bovine and porcine myocardium [56, 
57]. These metabolites demonstrate regulatory effects on blood 
pressure, as was shown in the study of Awumey et al. [58].  
 As well as in EET-EA, the CYP-mediated epoxygenation of 2-
AG to EET-G seems to be a kind of bioactivation, since these me-
tabolites exhibit a tighter binding to CB receptors than 2-AG [56]. 
EET-G may be oxidatively decomposed by CYP2J2 to AA and 
glycerol. 
2.1.4. N-arachidonoyldopamine 
 N-arachidonoyldopamine (NADA) is another endocannabinoid 
known to exert significant biological activity, e.g. in the immune 
system and pain perception [59, 60]. Besides hydrolysis to AA and 

dopamine by FAAH [35], NADA may be hydroxylated by rat mi-
crosomal protein in the presence of NADPH in the � and �-1 posi-
tions to form 19- and 20-hydroxyeicosatetraenyl dopamine (19-
HETE-DA and 20-HETE-DA) [60] (Fig. 4).  
 The question of epoxygenase reactions analogous to the CYP-
mediated metabolism of AA and anandamide remains to be further 
elucidated. 
2.1.5. Other Endocannabinoids and Cannabinoid-Like Com-
pounds 
 The metabolic fate of the other endocannabinoids and cannabi-
noid-like compounds, such as virodhamine, oleamide, N-
arachidonoylglycine, N-arachidonoylserine, or N-arachidonoyltaurine 
is not well understood, but hydrolysis with esterases or amide hy-
drolases is likely. On the other hand, hydrolysis of the ether group 
(e.g. noladin ether) by these enzymes is not likely, in contrast to 
oxidative metabolism, which may be an alternative degradative 
pathway for ethers, but there is still no direct evidence for this.  
2.1.6. Concluding Remarks Concerning Endocannabinoid Me-
tabolism 
 The metabolism of endocannabinoids via the hydrolytic path-
way (namely FAAH) usually produces inactive metabolites, in 
terms of their affinity to bind to CB receptors. On the other hand, 
the products of the oxidative pathway may be both metabolites with 
a lower affinity to CB receptors (20-HETE-EA and 14,15-EET-EA) 
and products with a higher affinity to the CB (or PPAR) receptor 
than the parent compound, as shown with some 2-11,12-EET-Gs 
and 2-14,15-EET-Gs [38]. Moreover, a molecule with higher stabil-
ity (5,6-EET-EA) can be produced. From this point of view, the 
inhibition of endocannabinoid degradation may be a valuable 
pharmacological target, and has been shown to produce anxiolytic-
like and antidepressant-like effects in animal models [62]. Despite 
promising results from animal studies, there are no reliable data on 
efficacy from clinical studies. The clinical trials were focused 
mostly on safety; in general, the inhibitors were well tolerated and 
lacked typical "cannabinoid-like effects" [62]. There has also been a 
reported lack of efficacy in a clinical trial of an FAAH inhibitor in 
the treatment of osteoarthritic pain [63]. Modulation of the oxida-
tive metabolic pathway was not studied in terms of a possible 
therapeutic approach; modulating the oxidative pathway would be 
problematic due to the involvement of CYPs (CYP2D6, CYP2C8, 
CYP3A) in the metabolism of other endogenous substances and 
possibly also co-administered drugs.  

2.2. The Metabolism of Phytocannabinoids via Cytochrome 
P450 Monooxygenases 
 The term phytocannabinoids covers naturally occurring phyto-
chemicals from Cannabis sativa, Cannabis indica, or Cannabis 

Table 4. Bis-allylic oxidations and hydroxylations of AA with double bond migration which are catalyzed by cytochrome P450 
enzymes [42]. 

CYP Product Tissue 

1A2 7-, 10-, 13-HETE liver 

3A4 7-, 10-, 13-HETE liver 

2C8 11-, 13-, 15-HETE liver 

2C9 12-, 13-HETE liver 

2C19 13-, 19-HETE liver 

4F8 13-HETE liver, ovary/testes 

4F12 18-HETE liver, kidney, GIT 
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Fig. (2). CYP-mediated metabolism of anandamide [4, 38, 61]. 

ruderalis which are able to interact with cannabinoid receptors [64, 
65]. Nearly 500 chemical entities were identified in Cannabis herb-
age, of which about 70 are phytocannabinoids. These compounds 
are present in the highest amounts in the viscous resin produced by 
the glandules of female cannabis inflorescence [64, 66]. As a result, 
several chemical classes of phytocannabinoids were defined by 
ElSohly et al. [66]: 1) cannabigerol type, 2) cannabichromene type, 
3) cannabidiol type, 4) (-)-�9-trans-tetrahydrocannabinol type,  

5) (-)-�8-trans-tetrahydrocanna-binol type, 6) cannabicyclol type, 7) 
cannabielsoin type, 8) cannabinol type, 9) cannabinodiol type, 10) 
cannabitriol type, and 11) miscellaneous type. In terms of this clas-
sification, the (-)-�9-trans-tetrahydrocannabinol type, cannabinol 
type, and cannabidiol type are the most abundant and best known 
and studied. Out of 70 known phytocannabinoids, only �9-THC, 
CBN, and CBD are reviewed in terms of oxidative metabolism by 
CYPs. No data were found for the other phytocannabinoids. 
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Fig. (3). CYP-mediated metabolism of 2-arachidonoylglycerol [4, 38]. 

Fig. (4). CYP-mediated metabolism of N-arachidonoyldopamine [60]. 

Fig. (5). Structure and CYP-mediated oxidative metabolism of �9-THC 
[69]. 

Fig. (6). Hydroxylation of CBN by CYP enzymes [69, 71]. 

2.2.1. �9-tetrahydrocannabinol  
 The oxidative biotransformation of �9-THC is quite compli-
cated – approximately 80 metabolites were identified in humans 
[67]. The majority of the biotransformation processes of �9-THC 
are catalyzed by CYPs (Fig. 5). The first metabolite of �9-THC was 
described back in 1970 by Nilsson et al., who used NMR to identify 
11-hydroxy-�9- THC in an extract from the incubation of a crude  
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Fig. (7). Hydroxylation of CBD by CYP enzymes [72]. 

microsomal fraction of rabbit liver with �9-THC [68]. This metabo-
lite was formerly named 7-hydroxy-�1-THC, because of the differ-
ent numbering of the terpenophenolic ring in the past. The second 
most abundant hydroxy-derivative of �9-THC is 8�-hydroxy-�9-
THC [69]. Later on, many other metabolites were identified, mostly 
in experiments with liver microsomes of different species, including 
humans, and the relative importance of CYPs was also examined, 
containing epoxygenated metabolites of THC [70]. The authors 
suggest that CYP2C9 and CYP3A4 probably play the most impor-
tant roles in the oxidative metabolism of �9-THC. Recently, Stout 
et al. [65] published a unique systematic review on the metabolism 
of cannabinoids.  
 Some of the metabolites of �9-THC seem to be active (e.g. 11-
hydroxy-�9-THC) and therefore some authors think that the oxida-
tive metabolism of �9-THC may be necessary for the effects of 
cannabis [69].  
2.2.2. Cannabinol 
 Cannabinol metabolism was studied by Kuzuoka et al. [71] and 
Watanabe et al. [69]. The chemical structure of CBN, being similar 
to �9-THC, leads us to expect similar metabolic pathways mediated 
by microsomal monooxygenases. The hydroxylations occur at posi-
tions 8 and 11, and CYP2C9 and CYP3A4 are involved in their 
formation as reported in [65, 69, 71] (Fig. 6).  
2.2.3. Cannabidiol 
 The metabolism of cannabidiol was investigated both in vivo
and in vitro. 33 different metabolites were found in human urine 
from a patient treated with CBD, 600 mg/day [72]. 
 CBD is metabolized primarily by the enzymes CYP2C19 and 
CYP3A4 [65, 73]. The hydroxylation reactions occur at positions 6, 
7, and positions 1�- 5� of the aliphatic pentyl- and position 10 on 
the propenyl- substituent (Fig. 7). Moreover, these metabolites may 
be further oxidized to form dihydroxylated metabolites and CBD-
oic acid derivatives [72]. In an experiment with recombinant human 
liver microsomes, Jiang et al. proved that 7 out of 14 recombinant 
human CYP enzymes may be involved in CBD metabolism [73]. 
These include CYP1A1, CYP1A2, CYP2C9, CYP2C19, CYP2D6, 
CYP3A4, and CYP3A5. 

 Among monohydroxylated metabolites, the most abundant were 
6�-OH-, 6�-OH-, 7-OH-, 1�-OH-, 2�-OH-, 3�-OH-, 4�-OH-, and 
5�-OH-CBD [73]. The authors also confirmed the importance of 
CYP3A4 and CYP2C19 in the overall metabolism of CBD, namely 
in the 6�-, 6�-, 7-, and 4�-hydroxylations of CBD with the use of 
selective isoform-specific inhibitors and anti-CYP3A4 antibodies. 
2.2.4. Other Phytocannabinoids 
 The metabolism of other phytocannabinoids has not been stud-
ied in humans, but the hydroxylation of several cannabinoids, in-
cluding THC, CBD, CBN, cannabichromene (CBC), and cannabi-
gerol (CBG) was studied in vitro in the liver microsomal fraction in 
several animal species [74]. In general, similar hydroxylation reac-
tions are catalyzed by microsomal fractions, but particular CYPs 
responsible for the reactions were not identified. Hydroxylation 
occurs most abundantly at the allylic part of the molecule at posi-
tions C5' and C6'. Apart from C5' and C6' hydroxylations, hydroxy-
lation also occurs at positions C2' and C1'' to C5'', and epoxidation 
at the double bond of the methylpentenyl group [74] (Fig. 8).
 Cannabigerol metabolism appeared to be similar to the metabo-
lism of CBC. Hydroxylations at the terminal allylic group of the 
side chain were the most abundant reactions in the liver micro-
somes of all species except for mouse, where C6' or C7' epoxide 
was the most abundant [74] (Fig. 8).  

Fig. (8). Structure of CBC (A) and CBG (B) and positions of oxidative 
metabolism mediated by microsomal enzymes in mouse, rat, guinea pig, 
rabbit, hamster, gerbil, cat [74]. 

 In summary, phytocannabinoids are extensively metabolized by 
CYP enzymes. For the most studied THC, CBN, and CBD, the 
enzymes CYP2C9, CYP2C19, and CYP3A4 catalyze the majority 
of hydroxylations. Most cannabinoids exhibit a similar pattern of 
oxidative metabolism [74]. At first, tricyclic cannabinoids (THC, 
CBD, and CBN) are the most effectively hydroxylated at the C-11 
position and to a lesser extent also at the C-8 position. Various de-
grees of hydroxylation and epoxidation also occur at the carbons of 
the side chain in all cannabinoids, with the exception of CBN.  
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2.3. Synthetic Cannabinoids 
 Besides the substances isolated from natural materials, many 
other ligands of CB receptors were synthetized in vitro. Synthetic 
cannabinoids cover the whole spectrum of receptor ligand types 
from full agonists to inverse agonists, and their biological effects 
are therefore miscellaneous [75]. For the purposes of this review, 
synthetic cannabinoids are classified into groups of drugs for thera-
peutic purposes, molecules used as research tools, and abused 
drugs. 
2.3.1. Synthetic Cannabinoids as Medicinal Products 
 Dronabinol (Marinol®) is a synthetic 	9-THC for oral use. It is 
approved for medical use in the United States and several other 
countries. Dronabinol is indicated for the treatment of anorexia 
associated with weight loss in patients suffering from AIDS and for 
the treatment of nausea and vomiting associated with cancer che-
motherapy in patients who have failed to respond adequately to 
conventional antiemetic therapy [76]. It undergoes extensive first-
pass hepatic metabolism, primarily by microsomal hydroxylation 
via multiple CYPs, yielding both active and inactive metabolites. Its 
principal active metabolite is 11-OH-	9-THC [76]. 
 Nabilone (Cesamet®) is a synthetic THC analogue for oral ad-
ministration. It is registered in Canada, the USA, and several other 
countries for the treatment of nausea and vomiting associated with 
cancer chemotherapy in patients who have failed to respond ade-
quately to conventional antiemetic treatments [77]. It has been sug-
gested that the antiemetic effect of nabilone is mediated by its inter-
action with the cannabinoid CB1 receptor within the central nerv-
ous system. The metabolism of nabilone is extensive, and several 
metabolites have been identified. According to the data from Ce-
samet® SPC [77], there are at least two metabolic pathways in-
volved in the biotransformation of nabilone. A minor pathway is 
initiated by the stereospecific enzymatic reduction of the 9-keto 
moiety of nabilone to produce the isomeric carbinol metabolite. 
Secondly, a metabolite of nabilone in faeces has been identified as a 
diol formed by reduction of the 9-keto group plus oxidation at the 
penultimate carbon of the dimethylheptyl side chain. In addition, 
there is evidence of extensive metabolism of nabilone by multiple 
CYPs. In vitro CYP inhibition studies using human liver micro-
somes showed that nabilone did not significantly inhibit the meta-
bolic activity of CYP1A2, 2A6, 2C19, 2D6, and 3A4. In clinical 
use, nabilone is unlikely to alter the CYP-mediated metabolism of 
co-administered drugs [77]. 
 Rimonabant (Acomplia®) was the first CB1 antagonist/inverse 
agonist to be approved for therapeutic use in metabolic syndrome 
and obesity [78]. Because of the significant risk of serious psychiat-
ric adverse effects, it was withdrawn from the market [79]. In vitro
experiments revealed CYP3A4 and amidohydrolase to be the major 
metabolic pathways involved in the biotransformation of rimona-
bant into inactive metabolites [80]. 
 A buccal spray preparation containing Cannabis extracts, 
whose main active ingredients are 	9-THC and CBD (Sativex®), is 
now available in many countries including the UK, Spain, Italy, and 
Germany (not available in the US). It is used for the symptomatic 
relief of spasticity or neuropathic pain in multiple sclerosis and in 
cancer pain [81]. The active substances have the same structures as 
natural 	9-THC and CBD, therefore they undergo the same meta-
bolic pathways.  
2.3.2. Synthetic Cannabinoids as Experimental Tools 
 Compounds that are known to activate CB1 and CB2 receptors 
with approximately equal potency and that are most commonly 
used in the laboratory as CB1/CB2 receptor agonists fall essentially 
into one of four chemical groups: classical cannabinoids, nonclassi-
cal cannabinoids, amino-alkylindoles, and eicosanoids [29].  
 The classical group consists of dibenzopyran derivatives. The 
prototypic synthetic member of this group is HU-210, a synthetic 

analogue of (-)-	8-THC. HU-210 displays a high affinity for CB1 
and CB2 receptors, and also a high potency and relative intrinsic 
activity as a cannabinoid receptor agonist [29]. In the study of Kim 
et al. [82], the in vitro metabolism of HU-210 was investigated 
using human liver microsomes to characterize associated phase I 
metabolites. HU-210 was metabolized to yield a total of 24 metabo-
lites, characterized as mono-oxygenated, mono-hydroxylated, di-
oxygenated, or di-hydroxylated metabolites. The specific enzymes 
involved in the formation of the metabolites were not investigated. 
 The nonclassical group contains bicyclic and tricyclic ana-
logues of 	9-THC that lack the pyran ring. The most widely used 
member of this group is CP 55,940. The oxidative metabolism of 
CP 55,940 was studied in mouse liver microsomes by Thomas et al.
[83]. The mass spectral data indicated that five monohydroxylated 
metabolites had been formed differing in their position of hydroxy-
lation. Two additional compounds were detected whose mass spec-
tral data suggested that these metabolites were hydroxylated at two 
positions on the side chain. Side chain hydroxylation is consistent 
with the metabolic profile of 	9-THC [83]. 
 The prototype of the aminoalkylindole group widely used in 
cannabinoid research is WIN 55,212-2. WIN 55,212-2 exhibits a 
relatively high efficacy at the CB1 and CB2 receptors and possesses 
CB1 and CB2 affinities in the low nanomolar range. The structure 
of WIN 55,212-2 bears no structural similarity to classical, nonclas-
sical, or eicosanoid cannabinoids [84]. The metabolism of WIN 
55,212-2 in rat liver microsomes was investigated in the study of 
Zhang et al. [85]. The HPLC chromatogram revealed two major 
and at least six minor metabolites derived from the parent com-
pound. The two major metabolites (representing 60 to 75 % of the 
total metabolites) were each identified as dihydrodiol metabolites 
resulting from the arene oxide pathway. Three of the minor metabo-
lites corresponded to structural isomers of the trihydroxylated par-
ent compound, the other two represent monohydroxylated isomers 
and another was determined to be a dehydrogenation product. Spe-
cific enzymes involved in the formation of metabolites were not 
investigated.  
 Members of the eicosanoid group of cannabinoid CB1/CB2 
receptor agonists have structures quite unlike those of classical, 
nonclassical, or aminoalkylindole cannabinoids. Two prominent 
members of this group are the endocannabinoids AEA and 2-AG. 
 The starting point for the development of the first CB1 selective 
agonists was the AEA molecule [29]. A number of agonists with 
significant selectivity for CB1 or CB2 receptors have been devel-
oped. Important CB1 selective agonists include the AEA analogues 
R-(+)-methanandamide, arachidonyl-2´-chloroethylamide (ACEA), 
and arachidonyl-cyclopropylamide (ACPA). Of these, both ACEA 
and ACPA share the susceptibility of AEA to enzymatic hydrolysis 
by FAAH [29, 86]. In contrast, methanandamide is less susceptible 
to enzymatic hydrolysis, probably because it is protected from this 
by the presence of a methyl substituent at the 1´ carbon [87].  
 The CB2 selective agonists most widely used as experimental 
tools have been the classical cannabinoid JWH-133, and the less 
selective aminoalkylindole JWH-015 [29]. The in vitro phase I 
metabolism of JWH-015 using human liver microsomes was stud-
ied by Mazarino et al. [88]. A total of 18 metabolites were formed. 
The biotransformation pathways detected consist of mono-
hydroxylation, di-hydroxylation, tri-hydroxylation, carboxylation, 
N-dealkylation, dehydratation, and combinations of them, confirm-
ing data from the study with rat liver microsomes [89]. Specific 
enzymes involved in the oxidative metabolism were not studied. 
2.3.3. Synthetic Cannabinoids as Abused Drugs 
 Synthetic cannabinoids recently became the largest group of 
compounds to be monitored in Europe by the EU Early Warning 
System on new psychoactive substances [90]. “Legal high” prod-
ucts containing synthetic cannabinoids (SCs) have probably been 
sold as herbal smoking mixtures since 2006. In 2008, a synthetic 
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cannabinoid JWH-018 was detected for the first time in a herbal 
mixture. In 2014, a further 30 new synthetic cannabinoids were 
reported for the first time, bringing the total number reported by the 
EU Early Warning System to 137 in February 2015 [91]. New 
drugs are synthesized by slight modifications of the known psy-
choactive “parent” compound, to obtain similar - or even stronger - 
psychoactive effects and to circumvent the law, being not yet in-
cluded in the lists of controlled substances [92]. The common prop-
erty of all SCs is that they interact with the CB1 and CB2 cannabi-
noid receptors and elicit cannabimimetic effects similar to �9-THC. 
They are synthesized in clandestine laboratories and illegally added 
to commercial products such as herbal blends (these are sold under 
brand names such as “Spice” and “K2”), which are claimed to be 
air fresheners or herbal incenses. The most common way of admini-
stration is smoking.  

The majority of compounds are chemically unrelated to �9-
THC. To date hundreds of SCs were categorized into the following 
structural groups: adamantoylindoles, aminoalkylindoles, ben-
zoylindoles, cyclohexylphenols, dibenzopyrans, naphthoylindoles, 
naphthylmethylindoles, naphthylmethylindenes, naphthoylpyrroles, 
phenylacetyl-indoles, tetramethylcyclopropylketone indoles, quino-
linyl ester indoles, and indazole carboxamide compounds [93]. 
Only limited data are available on the metabolism of the huge vari-
ety of synthetic cannabinoids. Due to the insufficient toxicity data, 
controlled human drug administration studies are not feasible. 
Therefore, in vitro experiments are alternative approaches for me-
tabolite profiling and structure elucidation. Most of the recent in 
vitro metabolite-profiling studies utilize human liver microsomes or 
human hepatocytes. So far, we have identified such studies for the 
following synthetic cannabinoids: AB-CHIMINACA [94], AB-
FUBINACA [95-97], AB-PINACA [95, 96, 98], 5F-AB-PINACA 
[98], ADB-FUBINACA [95], AKB-48 [99, 100], 5F-AKB-48 
[100], AM-2201 [101, 102], APICA [103], CP 47,497 [104], HU-
210 [82], JWH-015 [88], JWH-018 [105-108], JWH-073 [108], 
JWH-073 4-methylnaphthoyl analogue [108], JWH-122 [108-110], 
JWH-200 [109], JWH-210 [88], MAM-2201 [110], PB-22 [95, 
111], 5F-PB-22 [95, 111], RCS-4 [112], RCS-8 [113], STS-135 
(5F-APICA) [103, 114], UR-144 [102], and XLR-11 [115].  
 In vitro metabolite-profiling studies with subsequent confirma-
tion in authentic specimens provide critically important information 
for the identification of suitable in vivo biomarkers to document the 
intake of SCs in clinical and forensic settings. 
 Two of the above-cited investigations also focused on the iden-
tification of specific CYP enzymes involved in oxidative metabo-
lism. Chimalakonda et al. [101] studied the oxidative metabolism of 
[1-naphthalenyl-(1-pentyl-1H-indol-3-yl]-methanone (JWH-018) 
and its fluorinated counterpart AM-2201 [1-(5-fluoropentyl)-1H-
indol-3-yl]-1-naphthalenyl-methanone. Kinetic analysis using hu-
man liver microsomes and six human recombinant CYPs (CYP1A2, 
2C9, 2C19, 2D6, 2E1, and 3A4) identified CYP2C9 and CYP1A2 
as the major CYPs responsible for the generation of hydroxylated 
and carboxylated metabolites of JWH-018 and AM-2201. The con-
tribution of CYP2C19, 2D6, 2E1, and 3A4 in the hepatic metabolic 
clearance of these synthetic cannabinoids was minimal. These find-
ings are further supported by the results of another investigation 
that observed a concentration-dependent inhibition of JWH-018 and 
AM-2201 oxidation in human liver microsomes by the CYP2C9- 
and 1A2-selective chemical inhibitors sulfaphenazole and �-
naphthoflavone, respectively [116]. The study of Holm et al. [100] 
was focused on the elucidation of CYP enzymes involved in the 
oxidative metabolism of N-(1-adamantyl)-1-pentyl-1H-indazole-3-
carboxamide (AKB-48, also known as APINACA). Metabolite 
formation was screened using a panel of nine recombinant CYPs 
(CYP1A2, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4) and com-
pared the metabolites formed to human liver microsomal incuba-
tions with specific inhibitors against CYP2D6, 2C19, and 3A4, 
respectively. The results demonstrate that CYP3A4 is the major 

CYP responsible for the oxidative metabolism of AKB-48, prefer-
entially performing the oxidation on the adamantyl moiety of the 
compound. Such detailed data are not available for other SCs. 
However, SCs are structurally diverse and the involvement of other 
CYPs and non-CYP enzymes in phase I biotransformations is 
likely. This was recently demonstrated for the quinolineindole syn-
thetic cannabinoids PB-22, 5F-PB-22, and BB-22, where carboxy-
lesterase 1 hydrolyzes an ester bond [96]. In addition, carboxyles-
terase 1 also hydrolyzes the primary amide group of two other syn-
thetic cannabinoids, AB-PINACA and AB-FUBINACA [96].  
 Based on the recent evidence, synthetic cannabinoids are exten-
sively metabolized in phase I and phase II biotransformation reac-
tions. CYPs are involved in phase I metabolism. Oxidative metabo-
lism forms preferably mono-, di-, and tri- hydroxylated, carboxy-
lated, and N-dealkylated metabolites. Unlike �9-THC metabolism, 
several SC metabolites retain a high affinity for the CB1 and CB2 
receptors and exhibit a range of intrinsic activities. The majority of 
phase II SC metabolites are glucuronides. 

3. CANNABINOIDS AS REGULATORS OF CYP META-
BOLIC ACTIVITY  
 The therapeutic use of cannabis, its extracts and synthetic can-
nabinoids together with the pleiotropic regulatory activity of the 
endocannabinoid system and the role of CYP in the metabolism of 
cannabinoids raises the question of drug-drug interaction with co-
administered medicines. The decrease in the metabolic activity of 
individual CYPs can increase the plasma levels of their substrates, 
and symptoms of toxicity could appear. In the opposite direction, 
increased CYP activity will decrease the efficacy of its substrates, 
and can lead to the failure of a therapy.  
 The interactions between cannabinoids and CYPs could be 
simply caused by the competition of two substrates at the same 
CYP protein. Nevertheless, the huge metabolic capacity of CYP 
and involvement of alternative metabolic pathways decreases the 
clinical importance of such drug-drug interplay. The second possi-
bility involves the direct interaction of cannabinoids with the CYP 
protein in a non-competitive (allosteric) manner, which usually 
leads to enzyme inactivation or a slowdown of the metabolic reac-
tion. On the other hand, the possibility of allosteric induction for 
some substances was also described [117]. The final possibility for 
how cannabinoids can influence the CYP-mediated metabolism of 
co-administered drugs is by targeting the expression of CYP genes. 
This possibility is likely, due to the involvement of the endocan-
nabinoid system in many physiological functions, including some 
metabolic pathways [118, 119], and its interaction with many other 
neuronal systems and circuits which might also be involved. There-
fore, the results of research focused on the direct interaction of 
cannabinoids with CYP enzymes and the influence of cannabinoids 
on the metabolic activity assessed after systemic administration or 
in models using living cells with intact signal pathways could give 
different results and are described separately. 

3.1. Direct Interactions of Cannabinoids and CYP Proteins  
 Rimonabant was tested for the ability to bind to CYPs in the 
model of human liver microsomes (HLM). Approximately 19 % of 
the metabolites produced were covalently bound to CYPs [120]. 
Therefore it is not surprising that a mechanism-based inhibition of 
CYP3A4 and decrease in the metabolic activity over 70 % was 
described. A search for other CB1 antagonists for possible thera-
peutic use led to the synthesis of aminopyrazine CB1 inverse ago-
nists. The chlorine in the para position of the 5-phenyl ring was 
found to be responsible for the inhibition of CYP3A4 and its substi-
tution with a trifluoromethyl moiety did not change the potency at 
the CB1 receptor, increased aqueous solubility, and decreased po-
tential for CYP3A4 inhibition [121]. The negative psychotropic 
effects of rimonabant could be eliminated with analogues not cross-
ing the blood-brain barrier but with the effect on peripheral CB 
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receptors. LH-21, a CB1 antagonist with poor brain penetration, is 
similar to rimonabant in both its anorectic affect and also CYP in-
hibiting activity [122]. It inhibits the metabolic activity of CYP3A4, 
2C9, and 2D6 with the IC50 of 1.62, 8.14, and >105 
M, respec-
tively. The inhibition was weaker in comparison to the control in-
hibitors ketoconazole, sulfaphenazole, and quinidine. LH-21 is 
reported to be a moderate inhibitor of CYP3A4 and CYP2C9 and 
weak inhibitor of CYP2D6. 
 Ashino et al. described the inhibition of the CYP1A2 metabolic 
activity of different synthetic cannabinoids with the indole structure 
moiety in the model of mouse liver microsomes [123]. MAM-2201 
and JWH-019 with the naphtoylindole structure were the most po-
tent inhibitors, and decreased the activity to 47.7 % and 64.3 % of 
the control values at a concentration of 100 
M. Most of the ada-
mantoylindole derivatives inhibited the activity weakly (up to a 10 
% decrease) except for STS-135, which exhibited an inhibition 
comparable to naphtoylindole ligands. The last molecule tested with 
the tetramethylcyclopropylindole core exhibited moderate inhibi-
tory activity with a decrease to 73.4 % of the control values at a 100 

M concentration. 
 �9-THC, CBN, and CBD are the most studied substances of the 
phytocannabinoids group in terms of CYP interactions. All of them 
competitively inhibit the CYP1A enzyme family, but with different 
strengths [124]. The most potent inhibitor of CYP1A1 is CBD fol-
lowed by CBN, while the inhibition of CYP1A2 and CYP1B1 was 
stronger after CBN treatment. All the enzymes were inhibited by 
�9-THC less potently, with a low selectivity for individual CYP1 
enzymes. The subsequent studies revealed the pentylresorcinol 
[125] or methylresorcinol [126] structures to be important for the 
direct inhibition of CYP1A1. The same moiety is probably involved 
in the potent CYP2B6 inhibition by CBD [127], while �9-THC and 
CBN have a weaker effect. All of the substances decreased the 
activity in a mixed fashion in comparison to the inhibition of 
CYP2A6, which is non-competitive, and the inhibition potency of 
all three phytocannabinoids was weaker than the inhibition of 
CYP2B6. Similar results were obtained with CYP2C9, which was 
also inhibited by all three substances [128]. The strongest inhibition 
was reported for CBN, followed by �9-THC and CBD. The same 
substances were incubated with rat liver microsomes, and the 16�- 
and 2�–hydroxylation of testosterone was assessed [129]. The reac-
tion is mediated by CYP2C11, which is considered to be the coun-
terpart of human CYP2C9 [130]. However, the results are different 
from those obtained in the human studies. The inhibition was only 
detected in CBD-treated samples, while �9-THC and CBN did not 
influenced the enzyme activity. Both CBN and �9-THC decreased 
the omeprazole 5-hydroxylase activity, indicating their inhibitory 
effect on CYP2C19 [131], and at least one of the free phenolic 
groups and pentyl side chain are the structural determinants of this 
effect. The activity of CYP2D6 is again most sensitive to the effect 
of CBD [132]. Its IC50 values were 2-4 times lower than those of 
�9-THC and CBN. The CYP2D6 inhibition potency of these two is 
similar. Similarly to the influence on the enzymes of the CYP1A 
family, CYP3A enzymes are differentially sensitive to the effect of 
the major phytocannabinoids. CBD inhibited the activity of 
CYP3A4 and CYP3A5 most potently, while the influence of all 
three substances on the activity of CYP3A7 was comparable [133]. 
The inhibition of 3A4 can also be indirectly evidenced by the sup-
pression of cyclosporine A metabolism in both mouse and human 
liver microsomes preincubated with CBD [134]. The effect of phy-
tocannabinoids on the activity of 17�-hydroxylase (CYP17) was 
tested in the model of rat testis microsomes. However, CBD was 
the most potent inhibitor of CYP enzymes in most of the docu-
mented experiments, its inhibitory effect on the CYP17 activity was 
the weakest, and required IC50 concentrations over 290 
M [135]. 
On the other hand, �9-THC and CBN inhibited the enzyme’s activ-
ity with EC50 values of 42.8 
M and 32.9 
M, respectively. The 
inhibition of individual CYPs by phytocannabinoids is in accor-

dance with the older data obtained with less selective CYP sub-
strates [136-138]. 
 The clinical relevance of the presented data is questionable, due 
to the high concentrations of the tested drugs used in in vitro studies 
and their correspondence to plasma levels reached when phytocan-
nabinoids are used therapeutically or abused. When a marijuana 
cigarette (15.8 mg �9-THC) is smoked, the peak plasma concentra-
tions of �9-THC is reported to be only 268 nM [139]. Similarly 
after CBD and CBN (20 mg) administration by smoking a cigarette, 
the levels reached 363 nM and 406 nM, respectively [140, 141]. 
Moreover, the plasma levels of synthetic �9-THC dronabinol 
reached a nanomolar concentration when administered in the rec-
ommended therapeutic doses [124]. The review of inhibition con-
stants (Ki) values are presented in Table 5. It is obvious that clini-
cally relevant inhibition of CYP by phytocannabinoids is likely for 
enzymes of the CYP1 family with CBN and for the CYP1A1, 2B6, 
2C19, and 3A5 enzymes with CBD. The inhibition of CYP en-
zymes by THC is probably too weak to cause a clinically significant 
interaction with the co-administered drugs. 

3.2. The Influence of Cannabinoids on CYP Metabolic Activity 
– In vivo and Cell Culture Models 
 The possible discrepancy in the results of direct interaction 
experiments and the systemic administration of drugs can be dem-
onstrated in the work of Bornheim et al. [142]. Different analogues 
of THC were tested for both direct interaction with naïve mouse 
liver microsomes, and microsomes sampled 2 hours after the sys-
temic administration of THC analogues to mice. While in the direct 
interaction part of the study, some of the tested substances inhibited 
the activities of CYP3A and CYP2C, the same molecules produced 
no effect after systemic drug administration.  
 An important factor influencing the result of the study is the 
duration of drug pre-treatment before the activity is assessed. The 
results after a single dose of a drug and after the repeated admini-
stration can be different. After the repeated administration of a 
drug, higher values of plasma/tissue concentrations can be reached 
than with a single dose. Moreover, there is probably interplay be-
tween cannabinoids and endocannabinoid CB receptors, which can 
lead to changes in signal pathways including CYP liver regulation 
mechanisms. The subsequent change could therefore be time-
dependent, such as for instance the induction of the enzyme activity 
by the mechanism of increased gene transcription, and de novo 
protein synthesis usually takes at least several hours from the drug 
administration. An example can be found in the study concerning 
the effect of the synthetic cannabinoid receptor agonist CP 55,940 
on CYP activity in rats [143]. The only parameter that changed 
after a single intraperitoneal dose of the drug (0.4 mg/kg) was an 
increase in the oxygen consumption by the brain and liver. How-
ever after 11 days of treatment with the same dose of the substance 
the increased brain and hepatic mitochondrial respiration disap-
peared, and the P-450 reductase, benzo(A)pyrene hydroxylase, and 
ethoxycoumarin deethylase activities as well as the protein content 
of the liver microsomes were increased. 
 The results of the in vivo experiment undoubtedly also depend 
on the experimental model used. When CP 55,940 was adminis-
tered to mice (intraperitoneally, 0.5 mg/kg/day) for 5 or 24 days, 
the microsomal protein content was decreased after the latter type 
of administration [144], in contrast to the previous results with the 
same substance in rats. Nevertheless, the activity of CYP2E1, 
measured as p-nitrophenol oxidation, was unaffected. These data 
correspond with the results of Yang et al. from HepG2 cells incu-
bated with a natural CB receptor agonist CBD [145]. Other re-
searchers reported an increase in the expression of CYP2E1 and 
CYP2C6, together with an increased amount of total CYP hepatic 
content in mice after a single dose or repeated administration of 
hashish [146]. 
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 The variability in the experimental design thus leads to a high 
variation in the results obtained. However, if the data from the ex-
periments with the same designs are compared, the variability disap-
pears. The first data regarding the influence of phytocannabinoids on 
the activity of CYP in the animal models were homologous. An ex-
tract from cannabis prolonged the sleeping time of mice treated with 
the CYP substrate pentobarbitone, documenting the inhibition of its 
metabolism [147]. Similar results were obtained with CBD [148], the 
most studied cannabinoid in terms of CYP interactions. Moreover, 
CBD inhibited the enzyme activities of various more or less selective 
CYP substrates including p-nitroanisole O-demethylase [137], aniline 
hydroxylase [137], hexobarbital hydroxylase [149], erythromycin N-
demethylase [149], 6�-testosterone hydroxylase [149], and amino-
pyrine N-demethylase [150].  
 The influence of CBD on single CYPs was evaluated in a num-
ber of studies. CBD administered to mice at a dose of 120 mg/kg 
inactivated CYP2C and CYP3A proteins by covalent binding after a 
single dose [151]. Whereas after repeated administration of the 
same dose, the expression of the mRNA of these two enzymes in-
creased as well as the protein content, while the activity remained 
unchanged [152], probably because of the inactivation reported 
previously. Similarly, in rats CBD decreased the total CYP hepatic 
content after repeated administration [153]. Further research re-
vealed decreased activities of CYP17 and CYP2C [154]. The influ-
ence of CBD on CYP2C activity is probably also sex-dependent 
[155]. 
 The most recent results from human cell cultures described the 
induction of CYP1A enzymes by marijuana smoke [156, 157], �9-
THC [157-159], and CBD [159], probably mediated by the aryl 
hydrocarbon receptor (AhR) [157, 159]. 
 One of the great advantages of animal models is the possibility 
of studying the effects of prenatal exposure to drugs. Maternal ex-
posure to �9-THC, CBD, and CBN increased the levels of hepatic 
CYP content, whereas postnatal exposure had the opposite effect in 
male rat offspring [160]. 

3.3. Drug-Drug CYP-Mediated Interactions of Cannabinoids  
 The interspecies differences in the CYP system [161] creates a 
great barrier to the clinical approximation of data obtained from 
animals. Nevertheless, in most preclinical studies either with �9-
THC or CBD, the results correspond to in vitro experiments, and 
generally these cannabinoids are reported to be CYP inhibitors. 
CBD significantly decreased the metabolism of CYP substrates, e.g. 
cocaine [162], anandamide [163], cyclosporine A [134], or THC 
[162, 164, 165]. However, the dose of CBD necessary to evoke the 
effect was 30 mg/kg in mice, which is higher than any dose of CBD 
used in clinical practice. 
 Although there is enough evidence of the influence of cannabi-
noids on the total hepatic amounts of CYPs and their activities from 
preclinical studies, the clinical data on the topic are scarce. The risk 
of interaction is significantly dependent on the dose administered. 
Rimonabant (40 mg/day for 8 days) did not affect the steady-state 
concentration of co-administered digoxin, midazolam, warfarin, 

nicotine or oral contraceptives [166]. The effect of medicinal can-
nabis (Bedrocan®), containing 18 % �9-THC and 0.8 % CBD ad-
ministered for 15 days, on the levels of irinotecan and docetaxel 
were tested in oncologic patients [167]. Similarly, no significant 
change in the clearance or exposure to the monitored drugs was 
observed. Finally, the summary of medicinal product characteristics 
of the synthetic �9-THC and CBD mixture (Sativex®) declares that 
no interactions with CYP3 substrates are expected [168]. It has to 
be stressed, that these results describe the risk of interaction of low 
doses of CBD. Nadulski et al. tested the effect of 5.4 mg of CBD on 
the pharmacokinetics of 10 mg of �9-THC [169] and concluded that 
the inhibitory effect of CBD on CYP in this dose is small compared 
to the variability of CYP activity caused by other factors. This con-
clusion could be generalized for the clinical use of CBD at doses of 
up to 5 mg per day. On the other hand, higher doses of CBD in the 
range 8-25 mg/kg/day were described to markedly inhibit the me-
tabolism of hexobarbital [170] or clobazam [171], both CYP3A4 
substrates. The interaction potential of the higher doses of CBD 
with CYP3A4 substrates is therefore clinically relevant. 

4. POSSIBLE INVOLVEMENT OF ENDOCANNABINOID 
SYSTEM IN THE REGULATION OF CYP EXPRESSION 
AND CYP METABOLIC ACTIVITY IN THE LIVER 
 The regulation of CYP metabolic activity is complex in nature, 
including many endogenous and exogenous factors determining the 
actual amounts of enzymes and their catalytic activities. Besides the 
exogenous ones, genetic polymorphisms, and the role of hormones 
are known to be endogenous factors regulating the expression and 
activity of CYPs. Recently, the involvement of some neuronal sys-
tems was reported [172-174]. The regulatory role of the endocan-
nabinoid system raises the question of its participation in this proc-
ess, too. Here, we hypothesize that the central and peripheral path-
ways of the endocannabinoid system and interplay between can-
nabinoid ligands and various receptors are probably involved in 
CYP regulation.  

4.1. The Role of Central Endocannabinoid System in the CYP 
Regulation 
 It is known that genes coding for various CYPs are regulated by 
endogenous hormones, which are under the control of the central 
nervous system. It has been also shown that changes in the brain 
dopaminergic, noradrenergic, and serotonergic systems can affect 
hepatic CYP expression [175]. The central endocannabinoid system 
modulates neurotransmission at inhibitory and excitatory synapses, 
and therefore could be also involved in the regulation of CYP activ-
ity. Thus the endocannabinoid system and possible interactions with 
other neuronal systems, its impact on the hypothalamic-pituitary 
axis (HPA) and on the levels of circulating hormones are reviewed.  
4.1.1. The Brain and Endocannabinoid System  
 Most central cannabinoid effects are mediated by the CB1 re-
ceptors widely expressed throughout the brain, where they are the 
most abundant in regions controlling a number of key functions [30, 
176]. Therefore, CB1 receptors are present at a high density in the 
basal ganglia, frontal cortex, hippocampus, and cerebellum, and at a 

Table 5. Inhibition of CYP metabolic activity in vitro [124, 125, 127-129, 131-133, 135]. 

 1A1 1A2 1B1 2A6 2B6 2C91 2C112 2C19 2D61 3A4 3A5 3A7 173

CBD 0.16C 2.69C 3.63C 55.0N 0.69M 5.6C 19.9 - 21.6C 0.793M 2.42 1.0C 0.195 12.3C 124.4M

�9-THC 4.78C 7.54C 2.47C 28.9N 2.81M 1.5M none 1.93M 17.1A >50A 35.6A 30.3A 15.9M

CBN 0.54C 0.08C 0.15C 39.8N 2.55M 0.93C none no data 12.3A >50A >50A 23.8A 4.5M

AHalf maximal inhibitory concentration (IC50) in �M. Other reported values are inhibition constants (Ki) in �M; MMixed type of inhibition; CCompetitive type of inhibition; NNon-
competitive type of inhibition; Enzymes are recombinant human proteins, if not indicated different; 1 Human liver microsomes.; 2 Rat liver microsomes; 3 Rat testis microsomes. 



Cannabinoids and Cytochrome P450 Interactions Current Drug Metabolism, 2016, Vol. 17, No. 3    217

moderate/low density in the nucleus accumbens, hypothalamus, and 
amygdala [177].  
 The predominant localization of CB1 receptors at the presynap-
tic terminals of neurons plays an important regulatory role, because 
they can influence the release of a number of different neurotrans-
mitters [178, 179]. The postsynaptic localization of CB1 receptors 
has been also observed, but only rarely [177]. The endocannabi-
noids are synthesized and released by postsynaptic neurons, and 
they act as retrograde neuronal messengers at presynaptic CB1 
receptors. The activation of CB1 receptors by endocannabinoids 
suppresses the presynaptic release of �-aminobutyric acid (GABA), 
glutamate, acetylcholine, serotonin, and noradrenaline [179]. 
  Another reason for the increased complexity of endocannabi-
noid signaling is the evidence that CB1 receptors form heteromers 
with a variety of other GPCRs [180]. CB1 receptors can form func-
tional heterodimers with �-opioid receptors [181], orexin-1 recep-
tors [182, 183], adenosine A2A receptors [184, 185], serotonergic 
(mainly 5-HT3) receptors [186, 187], or dopaminergic D2 receptors 
[188]. Another possible interaction between the dopaminergic and 
endocannabinoid system is indirectly via the GABAergic [189, 190] 
and glutamatergic system [191, 192].  
 Endocannabinoid signaling in the brain may influence liver 
CYP activity, but the signal has to be somehow mediated from the 
CNS to the periphery. It is known that such signal transduction 
could be found in hormones released from HPA and leading to 
subsequent changes in the hormonal levels released from peripheral 
organs. Hormones influence not only hepatic glucose or lipid me-
tabolism, but also the expression of genes coding for different CYP 
liver enzymes [193-196]. 
 Dopaminergic pathways which could possibly contribute to the 
release of hormones are the mesolimbic and the tuberoinfundibular 
pathways. It was reported that stimulation of the dopaminergic 
system increases growth hormone (GH) [197, 198], adrenocortico-
tropic hormone (ACTH), and corticosterone levels [199, 200]. In 
contrast, the levels of thyroid-stimulating hormone (TSH) after 
activation of the dopaminergic system were decreased [198, 201]. 
The ability of the brain dopaminergic system to affect liver CYP 
expression by altering the levels of pituitary hormones was first 
reported in the studies of Wójcikowski et al. [174, 202]. Dopa-
minergic D2 receptors were identified to be involved in the regula-
tion of hormones and liver CYP enzymes in the mesolimbic path-
way [174]. 
 Noradrenaline is one of the main neurotransmitters controlling 
the release of GH [172, 203]. It also controls the production and 
release of corticotropin-releasing hormone (CRH) and thyrotropin-
releasing hormone (TRH) [204]. The release of somatostatin is 
regulated by noradrenaline, among other neurotransmitters and 
neuropeptides. It was reported that a damage of the noradrenergic 
innervation in the arcuate nucleus (ARC) or periventricular hypo-
thalamic nucleus (PVN) proved an opposite effect on the regulation 
of CYP expression [172]. This can be explained by the fact that 
destruction of the noradrenergic innervation in the ARC leads to a 
decrease of the noradrenaline level and also to a decrease of the 
level of GH. While destruction of the noradrenergic innervation in 
the PVN causes a decrease of the level of noradrenaline, but the 
plasma concertation of GH are increased probably due to the de-
creased secretion of somatostatin. The involvement of the 
noradrenergic system in CYP regulation was confirmed by Kot et 
al. [205]. Again the hormones were identified to be the mediators of 
the effect from the brain to the liver. The same author reported the 
serotonergic system to also take part in CYP neurohumoral regula-
tion [173, 206, 207]. 
 The influence of exogenous cannabinoids on the secretion of 
pituitary hormones has been known for a long time, but the role of 
endocannabinoids in the neuroendocrine system is not fully under-
stood yet [208, 209]. Based on available studies, two options for 

how endocannabinoids influence HPA are suggested: (i) a direct 
effect mediated by endocannabinoids receptors and/or (ii) an indi-
rect effect when cannabinoids change the activity of the endocan-
nabinoid system and this modulates the activity of other neuronal 
systems controlling HPA. CB1 receptors are expressed in various 
regions of the brain, and were also detected in the hypothalamus 
and pituitary gland [210, 211]. Many studies describe the influence 
of cannabinoids or endocannabinoids on the levels of CRH, GH, 
TSH, prolactin (PRL), and luteinizing hormone (LH), but their 
findings are often contradictory [208, 212-216]. It seems that the 
main structure of endocannabinoid influence on neuroendocrine 
functions is the hypothalamus, where they act as retrograde mes-
sengers activating the CB1 receptors. Importantly, it was revealed 
that endocannabinoids are involved in the rapid negative feedback 
actions of glucocorticoids (GCs) in parvocellular neurons of the 
hypothalamic paraventricular nuclei (PVN) containing CRH. GCs, 
after binding to glucocorticoid (GR) receptors localized in the PVN, 
activate the postsynaptic GPCRs. This leads to the synthesis and 
release of endocannabinoids. These endocannabinoids act as retro-
grade messengers to the CB1 receptors located at presynaptic glu-
tamate terminals and inhibit glutamate release [217]. These findings 
thus provide a possible mechanism for the rapid feedback inhibition 
of the hypothalamic pituitary adrenal axis by GCs. Moreover, the 
CB1 receptors and endocannabinoids are found throughout all of 
the extrahypothalamic sites that regulate PVN neuronal activation, 
such as the hippocampus, prefrontal cortex, amygdala, bed nucleus 
of the stria terminalis, and midbrain monoaminergic nuclei, such as 
the locus coeruleus and dorsal raphe [218]. These brain regions are 
the most likely sites of interaction between the endocannabinoid 
system and other nervous systems [190, 219-221]. 
 Once the CB ligands directly change the activity of the endo-
cannabinoid system or indirectly the activity of other neurotrans-
mitters and the HPA is changed, hormones start the signal transduc-
tion towards the liver (Fig. 9). The regulation of liver CYP enzymes 
by hormones involves binding the hormone to the nuclear receptor 
and translocation of the ligand-receptor complex into the cell nu-
cleus. The expression of specific genes including CYP enzymes is 
activated or inhibited. GH, GCs, and TSH are ligands of nuclear 
receptors able to change the expression of CYP genes [222-224]. 
The influence of hormones on the transcription activity of CYP 
genes is described at a glance in Table 6.  

4.2. The Involvement of Peripheral Cannabinoid Receptors in 
the CYP Regulation 
 When administered systemically, cannabinoids are able to 
target both the regulation centers in the brain and the receptors in 
peripheral tissues including the liver. Except for the direct 
interaction with CYPs (see chapter 3.1.) there is a possibility of the 
influence of cannabinoids on the receptors of target cells. The 
receptor specificity of cannabinoids is broad due to their high 
structure variability, therefore there are many receptors which 
might be activated or inhibited with regard to the properties of the 
ligand. Here we describe the evidence of interaction between 
cannabinoids and peripheral receptors involved in the signal 
pathways of CYP regulation and the role of these receptors in CYP 
regulation. 
 The key ligand-activated transcriptional regulators of CYPs are 
the pregnane X receptor (PXR), constitutive androstane receptor 
(CAR), retinoid X receptors (RXRs), peroxisome proliferator-
activated receptors (PPARs), glucocorticoid receptors (GRs), and 
aryl hydrocarbon receptor (AhR) [222].  
 Briefly, PXR plays a key role in the regulation of the CYP2B6, 
CYP2C, CYP2A6, CYP3A, and CYP4F12 genes [238-245]. Ago-
nists of PXR induce these CYP enzymes. In addition to the induc-
tion of CYP enzymes, PXR activation also represses CYP7A1 ex-
pression as a protective feedback in response to the accumulation of 
bile acids in the liver [224, 246]. 
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 The activation of CAR is linked to the induction of CYP2B 
[247]. There is signaling cross-talk between PXR and CAR. These 
receptors control the expression of human CYP2A6 [238], CYP2B6 
[248], CYP2C8/9 [230, 249], CYP2C19 [232], CYP3A4 [250], 
CYP3A5 [251], and CYP3A7 [252].  
 AhR is not a true nuclear receptor; it belongs to a family of 
transcription factors that contain the basic-helix-loop-helix and Per-
ARNT-Sim domains. AhR requires the AhR nuclear translocator as 

its heterodimerization partner to be translocated into the nucleus 
and turn on the CYP gene transcription. AhR triggers the expres-
sion of CYP1A and CYP1B [222, 223]. 
 The PPAR family currently has four members - PPAR�,
PPAR�, PPAR�, and PPAR� - which differ in their localization 
[253]. After activation by appropriate ligands, PPARs bind as  
heterodimers with RXR (PPAR/RXR) to peroxisome proliferator 
response elements. It has been shown that CYP2B, CYP3A, and 

Table 6. Hormonal regulation of CYP genetic transcription [175, 193-195, 225-237]. 

GC T3 GH PRL 

�2A6b �1A1/2a �1A2 b �2C11a

�2B6 b �2A1/2a �2A1a �2D1a

�2B8 b �3A1/2a �2C7a �3A4a

�2C8 b �3A4 b �2C12a

�2C9 b �7A1 b �2C11a

�2C19 b �2C19 b

�3A4 b �2D1a

�3A5 b �2E1a

�3A1a

aData from preclinical experiments on rats. bData obtained from human cell lines. 

Fig. (9). Endocannabinoid system and cannabinoids in the regulation of CYP activity. 
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CYP4A are activated by PPAR, and CYP2C11 is suppressed by the 
PPAR agonist [254, 255].  
 CYP3A and CYP2B proteins are distinctly regulated by GRs 
[256]. GRs may induce the expression of a gene that does not con-
tain GRE in its promoter. This is exerted by indirect “trans-
regulation”. Moreover, GRs contribute to functional cross-talk be-
tween the PXR, CAR, AhR, and RXR signaling pathways [222, 
226]. 
 RXR is directly or indirectly involved in the regulation of many 
enzymes and can be considered to be a limiting factor in the overall 
regulation of hepatic gene expression patterns [253]. 
 Some endocannabinoids, phytocannabinoids, and synthetic 
cannabinoids are ligands of different PPARs and the AhR. An over-
view of the selectivity of drugs to individual receptors is given in 
Table 7.

5. CONCLUSION 
 Cannabinoids are a structurally and pharmacodynamically het-
erogeneous group of drugs with great potential for therapeutic use 
in the near future. The involvement of CYP in their metabolism is 
clear and indisputable, whereas the clinical significance of their 
drug-drug interactions has yet to be evaluated in detail. These inter-
plays may have various mechanisms from the direct interaction of 
two substrates at the same enzyme, through different types of an-
tagonism with the CYP protein to the activation of various recep-
tors and changes in hormonal levels leading to an alteration in the 
expression of CYP genes. The latter describes the suggested in-
volvement of the endocannabinoid system in the central regulation 
of hepatic CYP activity. This hypothesis is based on indirect evi-
dence, and could be proved or refuted by further studies. Moreover, 
we suggest that changes in liver CYP metabolic activity could be 
time-dependent. Our idea is based on the signal transduction from 
the brain to the liver via hormones which are under HPA control, 
and a negative feedback mechanism plays a significant role here. 
Therefore, the hormonal changes induced by drug administration 
can be short-lived as well as the changes in CYP activity. To the 
best of our knowledge, the factor of time was not studied in any of 
the previous works focusing on the role of the central nervous sys-
tem in the regulation of liver CYP activity. 

LIST OF ABBREVIATIONS 
�9-THC = (-)-trans-�9-tetrahydrocannabinol 
2-AG = 2-arachidonoylglycerol 
5-HT = 5-hydroxytryptamine, serotonin 
AA = Arachidonic acid 
ABHD = �,�-hydrolase domain 
ACEA = Arachidonyl-2´-chloroethylamid 
ACPA = Arachidonyl-cyclopropylamide  
ACTH = Adrenocorticotropic hormone 
AhR = Aryl hydrocarbon receptor 

ARC = Arcuate nucleus 
CAR = Constitutive androstane receptor 
CBC = Cannabichromene 
CBD = Cannabidiol 
CBG = Cannabigerol 
CBN = Cannabinol 
CYP = Cytochrome P450 
DA = Dopamine 
diHETE = Dihydroxyeicosatrienoic acids 
EET = Epoxyeicosatrienoic acids 
EET-EA = Epoxyeicosatrienoic acid ethanolamide 
EET-G = Epoxyeicosatrienylglycerol derivatives 
FAAH = Fatty acid amide hydrolase 
GABA = �-aminobutiric acid 
GCs = Glucocorticoids 
GH = Growth hormone 
GPCRs = G-protein coupled receptors 
GRs = Glucocorticoid receptors  
HEET-EA = 20-hydroxy-epoxyeicosatrienyl ethanolamide 
HETE = Hydroxyeicosatrienoic acid 
HETE-DA = Hydroxyeicosatetraenyl dopamine  
HPA = Hypothalamic-pituitary axis 
LH = Luteinizing hormone 
NA = Noradrenaline 
NADA = N-arachidonoyldopamine 
PPARs = Peroxisome proliferator-activated receptors 
PRL = Prolactin 
PVN = Paraventricular nucleus 
RXRs = Retinoid X receptors 
SC = Synthetic cannabinoid 
T3 = Triiodothyronine 
T4 = Thyroxine 
TSH = Thyroid-stimulating hormone 
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Table 7. Cannabinoid ligands of nuclear receptors [157, 159, 257, 258]. 

PPAR� PPAR� PPAR� AhR 

N-oleoylethanolamine AEA, 2-AG N-oleoylethanolamine �9-THC 

palmitoylethanolamide NADA, �9-THC  CBD 

virodhamine ajulemic acid   

noladin ether CP 55,940, HU-210   

 WIN 55,212-2   
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